Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(8611)

Unified Diff: chrome/installer/zucchini/suffix_array.h

Issue 2963463002: [Zucchini] Generic suffix array algorithms. (Closed)
Patch Set: Rebase Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « chrome/installer/zucchini/BUILD.gn ('k') | chrome/installer/zucchini/suffix_array_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: chrome/installer/zucchini/suffix_array.h
diff --git a/chrome/installer/zucchini/suffix_array.h b/chrome/installer/zucchini/suffix_array.h
new file mode 100644
index 0000000000000000000000000000000000000000..1df25df3ecf0df658be5dd88420ac5f7d67d766e
--- /dev/null
+++ b/chrome/installer/zucchini/suffix_array.h
@@ -0,0 +1,472 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
+#define CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
+
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <numeric>
+#include <vector>
+
+#include "base/logging.h"
+
+namespace zucchini {
+
+// A functor class that implements the naive suffix sorting algorithm that uses
+// std::sort with lexicographical compare. This is only meant as reference of
+// the interface.
+class NaiveSuffixSort {
+ public:
+ // Type requirements:
+ // |InputRng| is an input random access range.
+ // |KeyType| is an unsigned integer type.
+ // |SAIt| is a random access iterator with mutable references.
+ template <class InputRng, class KeyType, class SAIt>
+ // |str| is the input string on which suffix sort is applied.
+ // Characters found in |str| must be in the range [0, |key_bound|)
+ // |suffix_array| is the beginning of the destination range, which is at least
+ // as large as |str|.
+ void operator()(const InputRng& str,
+ KeyType key_bound,
+ SAIt suffix_array) const {
+ using size_type = typename SAIt::value_type;
+
+ size_type n = static_cast<size_type>(std::end(str) - std::begin(str));
+
+ // |suffix_array| is first filled with ordered indices of |str|.
+ // Those indices are then sorted with lexicographical comparisons in |str|.
+ std::iota(suffix_array, suffix_array + n, 0);
+ std::sort(suffix_array, suffix_array + n, [&str](size_type i, size_type j) {
+ return std::lexicographical_compare(std::begin(str) + i, std::end(str),
+ std::begin(str) + j, std::end(str));
+ });
+ }
+};
+
+// A functor class that implements suffix array induced sorting (SA-IS)
+// algorithm with linear time and memory complexity,
+// see http://ieeexplore.ieee.org/abstract/document/5582081/
+class Sais {
grt (UTC plus 2) 2017/07/24 09:09:42 "Names should be descriptive; avoid abbreviation."
etiennep1 2017/07/27 17:26:02 Done.
+ public:
+ // Type requirements:
+ // |InputRng| is an input random access range.
+ // |KeyType| is an unsigned integer type.
+ // |SAIt| is a random access iterator with mutable values.
+ template <class InputRng, class KeyType, class SAIt>
+ // |str| is the input string on which suffix sort is applied.
+ // Characters found in |str| must be in the range [0, |key_bound|)
+ // |suffix_array| is the beginning of the destination range, which is at least
+ // as large as |str|.
+ void operator()(const InputRng& str,
+ KeyType key_bound,
+ SAIt suffix_array) const {
+ using value_type = typename InputRng::value_type;
+ using size_type = typename SAIt::value_type;
+
+ static_assert(std::is_unsigned<value_type>::value,
+ "Sais only supports input string with unsigned values");
+ static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
+
+ size_type n = static_cast<size_type>(std::end(str) - std::begin(str));
+
+ Implementation<size_type, KeyType>::SuffixSort(std::begin(str), n,
+ key_bound, suffix_array);
+ }
+
+ // Given string S of length n. We assume S is terminated by a unique sentinel
+ // $, which is considered as the smallest character. This sentinel does not
+ // exist in memory and is only treated implicitly, hence |n| does not count
+ // the sentinel in this implementation. We denote suf(S,i) the suffix formed
+ // by S[i..n).
+
+ // A suffix suf(S,i) is said to be S-type or L-type, if suf(S,i) < suf(S,i+1)
+ // or suf(S,i) > suf(S,i+1), respectively.
+ enum SLType : bool { SType, LType };
+
+ // A character S[i] is said to be S-type or L-type if the suffix suf(S,i) is
+ // S-type or L-type, respectively.
+
+ // A character S[i] is called LMS (leftmost S-type), if S[i] is S-type and
+ // S[i-1] is L-type. A suffix suf(S,i) is called LMS, if S[i] is an LMS
+ // character.
+
+ // A substring S[i..j) is an LMS-substring if
+ // (1) S[i] is LMS, S[j] is LMS or the sentinel $, and S[i..j) has no other
+ // LMS characters, or
+ // (2) S[i..j) is the sentinel $.
+
+ template <class SizeType, class KeyType>
+ struct Implementation {
grt (UTC plus 2) 2017/07/24 09:09:42 should this be in a private: section of Sais?
etiennep1 2017/07/27 17:26:02 It would make sense to have this private, but it i
+ static_assert(std::is_unsigned<SizeType>::value,
+ "SizeType must be unsigned");
+ static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
+ using size_type = SizeType;
+ using key_type = KeyType;
+
+ using iterator = typename std::vector<size_type>::iterator;
+ using const_iterator = typename std::vector<size_type>::const_iterator;
+
+ // Partition every suffix based on SL-type. Returns the number of LMS
+ // suffixes.
+ template <class StrIt>
+ static size_type BuildSLPartition(
+ StrIt str,
+ size_type length,
+ key_type key_bound,
+ std::vector<SLType>::reverse_iterator sl_partition_it) {
+ // We will count LMS suffixes (S to L-type or last S-type).
+ size_type lms_count = 0;
+
+ // |previous_type| is initialized to L-type to avoid counting an extra
+ // LMS suffix at the end
+ SLType previous_type = LType;
+
+ // Initialized to dummy, impossible key.
+ key_type previous_key = key_bound;
+
+ // We're travelling backward to determine the partition,
+ // as if we prepend one character at a time to the string, ex:
+ // b$ is L-type because b > $.
+ // ab$ is S-type because a < b, implying ab$ < b$.
+ // bab$ is L-type because b > a, implying bab$ > ab$.
+ // bbab$ is L-type, because bab$ was also L-type, implying bbab$ > bab$.
+ for (auto str_it = std::reverse_iterator<StrIt>(str + length);
+ str_it != std::reverse_iterator<StrIt>(str);
+ ++str_it, ++sl_partition_it) {
+ key_type current_key = *str_it;
+
+ if (current_key > previous_key || previous_key == key_bound) {
+ // S[i] > S[i + 1] or S[i] is last character.
+ if (previous_type == SType)
+ // suf(S,i) is L-type and suf(S,i + 1) is S-type, therefore,
+ // suf(S,i+1) was a LMS suffix.
+ ++lms_count;
+
+ previous_type = LType; // For next round.
+ } else if (current_key < previous_key) {
+ // S[i] < S[i + 1]
+ previous_type = SType; // For next round.
+ }
+ // Else, S[i] == S[i + 1]:
+ // The next character that differs determines the SL-type,
+ // so we reuse the last seen type.
+
+ *sl_partition_it = previous_type;
+ previous_key = current_key; // For next round.
+ }
+
+ return lms_count;
+ }
+
+ // Find indices of LMS suffixes and write result to |lms_indices|.
+ static void FindLmsSuffixes(const std::vector<SLType>& sl_partition,
+ iterator lms_indices) {
+ // |previous_type| is initialized to S-type to avoid counting an extra
+ // LMS suffix at the beginning
+ SLType previous_type = SType;
+ for (size_type i = 0; i < sl_partition.size(); ++i) {
+ if (sl_partition[i] == SType && previous_type == LType)
+ *lms_indices++ = i;
+ previous_type = sl_partition[i];
+ }
+ }
+
+ template <class StrIt>
+ static std::vector<size_type> MakeBucketCount(StrIt str,
+ size_type length,
+ key_type key_bound) {
+ // Occurrence of every unique character is counted in |buckets|
+ std::vector<size_type> buckets(static_cast<size_type>(key_bound));
+
+ for (auto it = str; it != str + length; ++it)
+ ++buckets[*it];
+ return buckets;
+ }
+
+ // Apply induced sort from |lms_indices| to |suffix_array| associated with
+ // the string |str|.
+ template <class StrIt, class SAIt>
+ static void InducedSort(StrIt str,
+ size_type length,
+ const std::vector<SLType>& sl_partition,
+ const std::vector<size_type>& lms_indices,
+ const std::vector<size_type>& buckets,
+ SAIt suffix_array) {
+ // All indices are first marked as unset with the illegal value |length|.
+ std::fill(suffix_array, suffix_array + length, length);
+
+ // Used to mark bucket boundaries (head or end) as indices in str.
+ DCHECK(!buckets.empty());
+ std::vector<size_type> bucket_bounds(buckets.size());
+
+ // Step 1: Assign indices for LMS suffixes, populating the end of
+ // respective buckets but keeping relative order.
+
+ // Find the end of each bucket and write it to |bucket_bounds|.
+ std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin());
+
+ // Process each |lms_indices| backward, and assign them to the end of
+ // their respective buckets, so relative order is preserved.
+ for (auto it = lms_indices.crbegin(); it != lms_indices.crend(); ++it) {
+ key_type key = str[*it];
+ suffix_array[--bucket_bounds[key]] = *it;
+ }
+
+ // Step 2
+ // Scan forward |suffix_array|; for each modified suf(S,i) for which
+ // suf(S,SA(i) - 1) is L-type, place suf(S,SA(i) - 1) to the current
+ // head of the corresponding bucket and forward the bucket head to the
+ // right.
+
+ // Find the head of each bucket and write it to |bucket_bounds|. Since
+ // only LMS suffixes where inserted in |suffix_array| during Step 1,
+ // |bucket_bounds| does not contains the head of each bucket and needs to
+ // be updated.
+ bucket_bounds[0] = 0;
+ std::partial_sum(buckets.begin(), buckets.end() - 1,
+ bucket_bounds.begin() + 1);
+
+ // From Step 1, the sentinel $, which we treat implicitly, would have
+ // been placed at the beginning of |suffix_array|, since $ is always
+ // considered as the smallest character. We then have to deal with the
+ // previous (last) suffix.
+ if (sl_partition[length - 1] == LType) {
+ key_type key = str[length - 1];
+ suffix_array[bucket_bounds[key]++] = length - 1;
+ }
+ for (auto it = suffix_array; it != suffix_array + length; ++it) {
+ size_type suffix_index = *it;
+
+ // While the original algorithm marks unset suffixes with -1,
+ // we found that marking them with |length| is also possible and more
+ // convenient because we are working with unsigned integers.
+ if (suffix_index != length && suffix_index > 0 &&
+ sl_partition[--suffix_index] == LType) {
+ key_type key = str[suffix_index];
+ suffix_array[bucket_bounds[key]++] = suffix_index;
+ }
+ }
+
+ // Step 3
+ // Scan backward |suffix_array|; for each modified suf(S, i) for which
+ // suf(S,SA(i) - 1) is S-type, place suf(S,SA(i) - 1) to the current
+ // end of the corresponding bucket and forward the bucket head to the
+ // left.
+
+ // Find the end of each bucket and write it to |bucket_bounds|. Since
+ // only L-type suffixes where inserted in |suffix_array| during Step 2,
+ // |bucket_bounds| does not contain the end of each bucket and needs to
+ // be updated.
+ std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin());
+
+ for (auto it = std::reverse_iterator<SAIt>(suffix_array + length);
+ it != std::reverse_iterator<SAIt>(suffix_array); ++it) {
+ size_type suffix_index = *it;
+ if (suffix_index != length && suffix_index > 0 &&
+ sl_partition[--suffix_index] == SType) {
+ key_type key = str[suffix_index];
+ suffix_array[--bucket_bounds[key]] = suffix_index;
+ }
+ }
+ // Deals with the last suffix, because of the sentinel.
+ if (sl_partition[length - 1] == SType) {
+ key_type key = str[length - 1];
+ suffix_array[--bucket_bounds[key]] = length - 1;
+ }
+ }
+
+ // Given a string S starting at |str| with length |length|, an array
+ // starting at |substring_array| containing lexicographically ordered LMS
+ // terminated substring indices of S and an SL-Type partition |sl_partition|
+ // of S, assigns a unique label to every unique LMS substring. The sorted
+ // labels for all LMS substrings are written to |lms_str|, while the indices
+ // of LMS suffixes are written to |lms_indices|. In addition, returns the
+ // total number of unique labels.
+ template <class StrIt, class SAIt>
+ static size_type LabelLmsSubstrings(StrIt str,
+ size_type length,
+ const std::vector<SLType>& sl_partition,
+ SAIt suffix_array,
+ iterator lms_indices,
+ iterator lms_str) {
+ // Labelling starts at 0.
+ size_type label = 0;
+
+ // |previous_lms| is initialized to 0 to indicate it is unset.
+ // Note that suf(S,0) is never a LMS suffix. Substrings will be visited in
+ // lexicographical order.
+ size_type previous_lms = 0;
+ for (auto it = suffix_array; it != suffix_array + length; ++it) {
+ if (*it > 0 && sl_partition[*it] == SType &&
+ sl_partition[*it - 1] == LType) {
+ // suf(S, *it) is a LMS suffix.
+
+ size_type current_lms = *it;
+ if (previous_lms != 0) {
+ // There was a previous LMS suffix. Check if the current LMS
+ // substring is equal to the previous one.
+ SLType current_lms_type = SType;
+ SLType previous_lms_type = SType;
+ for (size_type k = 0;; ++k) {
+ // |current_lms_end| and |previous_lms_end| denote whether we have
+ // reached the end of the current and previous LMS substring,
+ // respectively
+ bool current_lms_end = false;
+ bool previous_lms_end = false;
+
+ // Check for both previous and current substring ends.
+ // Note that it is more convenient to check if
+ // suf(S,current_lms + k) is an LMS suffix than to retrieve it
+ // from lms_indices.
+ if (current_lms + k >= length ||
+ (current_lms_type == LType &&
+ sl_partition[current_lms + k] == SType)) {
+ current_lms_end = true;
+ }
+ if (previous_lms + k >= length ||
+ (previous_lms_type == LType &&
+ sl_partition[previous_lms + k] == SType)) {
+ previous_lms_end = true;
+ }
+
+ if (current_lms_end && previous_lms_end) {
+ break; // Previous and current substrings are identical.
+ } else if (current_lms_end != previous_lms_end ||
+ str[current_lms + k] != str[previous_lms + k]) {
+ // Previous and current substrings differ, a new label is used.
+ ++label;
+ break;
+ }
+
+ current_lms_type = sl_partition[current_lms + k];
+ previous_lms_type = sl_partition[previous_lms + k];
+ }
+ }
+ *lms_indices++ = *it;
+ *lms_str++ = label;
+ previous_lms = current_lms;
+ }
+ }
+
+ return label + 1;
+ }
+
+ // Implementation of the SA-IS algorithm. |str| must be a random access
+ // iterator pointing at the beginning of S with length |length|. The result
+ // is writtend in |suffix_array|, a random access iterator.
+ template <class StrIt, class SAIt>
+ static void SuffixSort(StrIt str,
+ size_type length,
+ key_type key_bound,
+ SAIt suffix_array) {
+ if (length == 1)
+ *suffix_array = 0;
+ if (length < 2)
+ return;
+
+ std::vector<SLType> sl_partition(length);
+ size_type lms_count =
+ BuildSLPartition(str, length, key_bound, sl_partition.rbegin());
+ std::vector<size_type> lms_indices(lms_count);
+ FindLmsSuffixes(sl_partition, lms_indices.begin());
+ std::vector<size_type> buckets = MakeBucketCount(str, length, key_bound);
+
+ if (lms_indices.size() > 1) {
+ // Given |lms_indices| in the same order they appear in |str|, induce
+ // LMS substrings relative order and write result to |suffix_array|.
+ InducedSort(str, length, sl_partition, lms_indices, buckets,
+ suffix_array);
+ std::vector<size_type> lms_str(lms_indices.size());
+
+ // Given LMS substrings in relative order found in |suffix_array|,
+ // map LMS substrings to unique labels to form a new string, |lms_str|.
+ size_type label_count =
+ LabelLmsSubstrings(str, length, sl_partition, suffix_array,
+ lms_indices.begin(), lms_str.begin());
+
+ if (label_count < lms_str.size()) {
+ // Reorder |lms_str| to have LMS suffixes in the same order they
+ // appear in |str|.
+ for (size_type i = 0; i < lms_indices.size(); ++i)
+ suffix_array[lms_indices[i]] = lms_str[i];
+
+ SLType previous_type = SType;
+ for (size_type i = 0, j = 0; i < sl_partition.size(); ++i) {
+ if (sl_partition[i] == SType && previous_type == LType) {
+ lms_str[j] = suffix_array[i];
+ lms_indices[j++] = i;
+ }
+ previous_type = sl_partition[i];
+ }
+
+ // Recursively apply SuffixSort on |lms_str|, which is formed from
+ // labeled LMS suffixes in the same order they appear in |str|.
+ // Note that |KeyType| will be size_type because |lms_str| contains
+ // indices. |lms_str| is at most half the length of |str|.
+ Implementation<size_type, size_type>::SuffixSort(
+ lms_str.begin(), static_cast<size_type>(lms_str.size()),
+ label_count, suffix_array);
+
+ // Map LMS labels back to indices in |str| and write result to
+ // |lms_indices|. We're using |suffix_array| as a temporary buffer.
+ for (size_type i = 0; i < lms_indices.size(); ++i)
+ suffix_array[i] = lms_indices[suffix_array[i]];
+ std::copy_n(suffix_array, lms_indices.size(), lms_indices.begin());
+
+ // At this point, |lms_indices| contains sorted LMS suffixes of |str|.
+ }
+ }
+ // Given |lms_indices| where LMS suffixes are sorted, induce the full
+ // order of suffixes in |str|.
+ InducedSort(str, length, sl_partition, lms_indices, buckets,
+ suffix_array);
+ }
+ };
grt (UTC plus 2) 2017/07/24 09:09:42 ? private: DISALLOW_IMPLICIT_CONSTRUCTORS(I
etiennep1 2017/07/27 17:26:02 Done.
+};
+
+// Generates a sorted suffix array for the input string |str| using the functor
+// |Algorithm| which provides an interface equivalent to NaiveSuffixSort.
+/// Characters found in |str| are assumed to be in range [0, |key_bound|).
+// Returns the suffix array as a vector.
+// |StrRng| is an input random access range.
+// |KeyType| is an unsigned integer type.
+template <class Algorithm, class StrRng, class KeyType>
+std::vector<typename StrRng::size_type> MakeSuffixArray(const StrRng& str,
+ KeyType key_bound) {
+ Algorithm sort;
+ std::vector<typename StrRng::size_type> suffix_array(str.end() - str.begin());
+ sort(str, key_bound, suffix_array.begin());
+ return suffix_array;
+}
+
+// Type requirements:
+// |SARng| is an input random access range.
+// |StrIt1| is a random access iterator.
+// |StrIt2| is a forward iterator.
+template <class SARng, class StrIt1, class StrIt2>
+// Lexicographical lower bound using binary search for
+// [|str2_first|, |str2_last|) in the suffix array |suffix_array| of a string
+// starting at |str1_first|. This does not necessarily return the index of
+// the longest matching substring.
+auto SuffixLowerBound(const SARng& suffix_array,
+ StrIt1 str1_first,
+ StrIt2 str2_first,
+ StrIt2 str2_last) -> decltype(std::begin(suffix_array)) {
+ using size_type = typename SARng::value_type;
+
+ size_t n = std::end(suffix_array) - std::begin(suffix_array);
+ auto it = std::lower_bound(
+ std::begin(suffix_array), std::end(suffix_array), str2_first,
+ [str1_first, str2_last, n](size_type a, StrIt2 b) {
+ return std::lexicographical_compare(str1_first + a, str1_first + n, b,
+ str2_last);
+ });
+ return it;
+}
+
+} // namespace zucchini
+
+#endif // CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
« no previous file with comments | « chrome/installer/zucchini/BUILD.gn ('k') | chrome/installer/zucchini/suffix_array_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698