| Index: runtime/vm/unicode.cc
|
| diff --git a/runtime/vm/unicode.cc b/runtime/vm/unicode.cc
|
| index e9cd101026072f0282b8bd79cbb7ac668c8746dd..6d38f9e190d597c8c2523519f4d3ddcc33a6457d 100644
|
| --- a/runtime/vm/unicode.cc
|
| +++ b/runtime/vm/unicode.cc
|
| @@ -107,7 +107,53 @@ intptr_t Utf8::Length(int32_t ch) {
|
| return 4;
|
| }
|
|
|
| +// A constant mask that can be 'and'ed with a word of data to determine if it
|
| +// is all ASCII (with no Latin1 characters).
|
| +#if defined(ARCH_IS_64_BIT)
|
| +static const uintptr_t kAsciiWordMask = DART_UINT64_C(0x8080808080808080);
|
| +#else
|
| +static const uintptr_t kAsciiWordMask = 0x80808080u;
|
| +#endif
|
| +
|
| intptr_t Utf8::Length(const String& str) {
|
| + if (str.IsOneByteString() || str.IsExternalOneByteString()) {
|
| + // For 1-byte strings, all code points < 0x80 have single-byte UTF-8
|
| + // encodings and all >= 0x80 have two-byte encodings. To get the length,
|
| + // start with the number of code points and add the number of high bits in
|
| + // the bytes.
|
| + uintptr_t char_length = str.Length();
|
| + uintptr_t length = char_length;
|
| + const uintptr_t* data;
|
| + NoSafepointScope no_safepoint;
|
| + if (str.IsOneByteString()) {
|
| + data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(str));
|
| + } else {
|
| + data = reinterpret_cast<const uintptr_t*>(
|
| + ExternalOneByteString::DataStart(str));
|
| + }
|
| + uintptr_t i;
|
| + for (i = 0; i + sizeof(uintptr_t) < char_length; i += sizeof(uintptr_t)) {
|
| + uintptr_t chunk = *data++;
|
| + chunk &= kAsciiWordMask;
|
| + if (chunk != 0) {
|
| +// Shuffle the bits until we have a count of bits in the low nibble.
|
| +#if defined(ARCH_IS_64_BIT)
|
| + chunk += chunk >> 32;
|
| +#endif
|
| + chunk += chunk >> 16;
|
| + chunk += chunk >> 8;
|
| + length += (chunk >> 7) & 0xf;
|
| + }
|
| + }
|
| + // Take care of the tail of the string, the last length % wordsize chars.
|
| + for (; i < char_length; i++) {
|
| + if (str.CharAt(i) > kMaxOneByteChar) length++;
|
| + }
|
| + return length;
|
| + }
|
| +
|
| + // Slow case for 2-byte strings that handles surrogate pairs and longer UTF-8
|
| + // encodings.
|
| intptr_t length = 0;
|
| String::CodePointIterator it(str);
|
| while (it.Next()) {
|
| @@ -143,16 +189,64 @@ intptr_t Utf8::Encode(int32_t ch, char* dst) {
|
| }
|
|
|
| intptr_t Utf8::Encode(const String& src, char* dst, intptr_t len) {
|
| + uintptr_t array_len = len;
|
| intptr_t pos = 0;
|
| - String::CodePointIterator it(src);
|
| - while (it.Next()) {
|
| - int32_t ch = it.Current();
|
| - intptr_t num_bytes = Utf8::Length(ch);
|
| - if (pos + num_bytes > len) {
|
| - break;
|
| + ASSERT(static_cast<intptr_t>(array_len) >= Length(src));
|
| + if (src.IsOneByteString() || src.IsExternalOneByteString()) {
|
| + // For 1-byte strings, all code points < 0x80 have single-byte UTF-8
|
| + // encodings and all >= 0x80 have two-byte encodings.
|
| + const uintptr_t* data;
|
| + NoSafepointScope scope;
|
| + if (src.IsOneByteString()) {
|
| + data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(src));
|
| + } else {
|
| + data = reinterpret_cast<const uintptr_t*>(
|
| + ExternalOneByteString::DataStart(src));
|
| + }
|
| + uintptr_t char_length = src.Length();
|
| + uintptr_t pos = 0;
|
| + ASSERT(kMaxOneByteChar + 1 == 0x80);
|
| + for (uintptr_t i = 0; i < char_length; i += sizeof(uintptr_t)) {
|
| + // Read the input one word at a time and just write it verbatim if it is
|
| + // plain ASCII, as determined by the mask.
|
| + if (i + sizeof(uintptr_t) <= char_length &&
|
| + (*data & kAsciiWordMask) == 0 &&
|
| + pos + sizeof(uintptr_t) <= array_len) {
|
| + StoreUnaligned(reinterpret_cast<uintptr_t*>(dst + pos), *data);
|
| + pos += sizeof(uintptr_t);
|
| + } else {
|
| + // Process up to one word of input that contains non-ASCII Latin1
|
| + // characters.
|
| + const uint8_t* p = reinterpret_cast<const uint8_t*>(data);
|
| + const uint8_t* limit =
|
| + Utils::Minimum(p + sizeof(uintptr_t), p + (char_length - i));
|
| + for (; p < limit; p++) {
|
| + uint8_t c = *p;
|
| + // These calls to Length and Encode get inlined and the cases for 3
|
| + // and 4 byte sequences are removed.
|
| + intptr_t bytes = Length(c);
|
| + if (pos + bytes > array_len) {
|
| + return pos;
|
| + }
|
| + Encode(c, reinterpret_cast<char*>(dst) + pos);
|
| + pos += bytes;
|
| + }
|
| + }
|
| + data++;
|
| + }
|
| + } else {
|
| + // For two-byte strings, which can contain 3 and 4-byte UTF-8 encodings,
|
| + // which can result in surrogate pairs, use the more general code.
|
| + String::CodePointIterator it(src);
|
| + while (it.Next()) {
|
| + int32_t ch = it.Current();
|
| + intptr_t num_bytes = Utf8::Length(ch);
|
| + if (pos + num_bytes > len) {
|
| + break;
|
| + }
|
| + Utf8::Encode(ch, &dst[pos]);
|
| + pos += num_bytes;
|
| }
|
| - Utf8::Encode(ch, &dst[pos]);
|
| - pos += num_bytes;
|
| }
|
| return pos;
|
| }
|
|
|